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Introduction

I For 2D Navier-Stokes equations two conserved quantities:
Energy E =

∫
d2r ~u · ~u and Enstrophy Ω =

∫
d2r ~ω · ~ω

I Forward cascade of energy is blocked, since enstrophy is also
positive and definite. (Boffetta Ann. Rev. Fluid Mech 2012)

Ray et al, Phys. Rev. Lett. 107, 184503 (2011)



Introduction

I The invariants of 3D Navier-Stokes equations:
Energy E =

∫
d3r ~u · ~u and Helicity H =

∫
d3r ~u · ~ω

I Helicity could be positive or negative.

I Both cascades forward, from large scales to small scales.
(Chen, Phys. Fluids 2003)

I Growth of helicity at small scales, both in positive and
negative modes but finite because of the mirror symmetry.



Navier-Stokes equations

3D Navier-Stokes equation for incompressible flows

∂u

∂t
+ (u · ∇)u = ν∆u−∇p + f; ∇ · u = 0.

I Homogeneous and isotropic turbulence.

I Numerically solved in a 3D periodic domain using Gaussian
delta-correlated forcing.

I Forward energy cascade from large scales to small scales.

I Non-Gaussian PDFs show longer tails as indication of
intermittency.



Energy spectrum

Energy spectra E (k) =
∑

k3|k|=k |u(k)|2
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I Forward energy cascade from large scales to small scales in
our DNS of 3D Navier-Stokes equations.

I Shows a Kolmogorov k−5/3 scaling in the inertial range.



PDF of local energy dissipation rate

I Non-Gaussian PDFs show longer tails as indication of
intermittency.



Evidence of inverse energy cascade

I Energy spectrum in a turbulent flow confined in thick fluid
layers. (Xia et al, Nat Phys 2011)

I Formation of large scale vortex suppresses vertical motion and
supports large scale energy transfer.



Evidence of inverse energy cascade

I Energy spectrum in rotational turbulence with helical force.

I Plots of fluxes in inset shows direct cascade of helicity and direct and inverse
cascade of enegy.

I Positive definiteness of helicity leads to inverse energy tranfer.

Dynamics of inverse cascade of energy is a subset of all interactions in

the NS equations.



Helical-decomposition of velocity

I What happens when we change the relative weight
between positive and negative helicity modes?

I Can we separate positive and negative modes to
understand the dynamics?



Helical-decomposition of velocity

I In Fourier space, u(k, t) has two degrees of freedom since
k · u(k, t) = 0.

I We chose projection on orthonormal helical waves with
definite sign of helicty.

I Following Waleffe Phys. Fluids (1992)

u(k, t) = a+(k, t)h+(k) + a−(k, t)h−(k)

where h±(k) are the complex eigenvectors of
the curl operator ik× h±(k) = ±kh±(k).

I h∗s · ht = 2δst ; h
∗
s = h−s ,

where s and t could be +1 or −1



Helical-decomposition of velocity

I Choose h±(k) = µ̂(k)× k̂± iµ̂,
where µ̂ is an arbitrary unit vector orthogonal to k

I reality of the velocity field requires µ̂(k) = −µ̂(−k)

I Such requirement is satisfied, e.g., by the choice
µ̂(k) = z× k/||z× k||, with z an arbitrary vector.

I Projection operator:

P±(k) ≡ h±(k)⊗ h±(k)∗

h±(k)∗ · h±(k)

u±(k, t) = P±(k)u(k, t)

u(k, t) = u+(k, t) + u−(k, t)

I Eneregy E (t) =
∑

k |u+(k, t)|2 + |u−(k, t)|2.

I Helicity H(t) =
∑

k k(|u+(k, t)|2 − |u−(k, t)|2).



Helical-decimated Navier-Stokes equations

I Decimated Navier-Stokes equations in Fourier space:

∂tu
±(k, t) = P±(k)Nu±(k, t) + νk2u±(k, t) + f±(k, t)

where ν is kinematic viscosity and f is external forcing.

I The nonlinear term containing all triadic interactions

Nu±(k, t) = FT (u± ·∇u± −∇p)



Helical-decimated Navier-Stokes equations

I Four classes of
nonlinear triadic
interactions with
definite helicity signs
under helical
decomposition of NS
equations.

I Energy and helicity
are conserved for
each triads.



Inverse energy cascade

Triads with only u+ lead to reversal of energy cascade.

Energy spectra in the inverse cascade regime shows k−5/3 slope.
Biferale PRL (2012)



Helical-decimated Navier-Stokes equations

I Full decimation of u+ or u− → inverse cascade of energy.
No decimation → forward cascade of energy



Helical-decimated Navier-Stokes equations

I What happens in between??
I We decided not to kill all modes of a particular sign, but a

fraction ε of them.

I Is there a Critical value of ε at which forward cascade of
energy stops?
alternatively, inverse cascade of energy stops if forced at small
scales.



Helical-decimated Navier-Stokes equations

I Modified projection operator:

P+
ε (k)u(k, t) = u+(k, t) + θε(k)u−(k, t)

where θε(k) is 0 or 1 with probability ε and 1− ε, respectively.

I ε = 0 → Standard Navier-Stokes.
ε = 1 → Fully helical-decimated Navier-Stokes.

I Pseudo-spectral DNS on a triply periodic cubic domain of size
L = 2π with resolutions upto 5123 collocation points.

I Random Gaussian forcing:
〈fi (k, t)fj(q, t

′)〉 = F (k)δ(k− q)δ(t − t ′)Qi ,j(k),
where Qij(k) is a projector assuring incompressibility.
F (k) is nonzero only in the low wavenumber range
|k | ∈ [1 : 2].



Evolution of energy
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Energy vs time shows a initial block at the large scales before
reaching a steady state.
With increase in ε the peak grows, a signature of inverse cascade.



Energy spectra

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1  10  100

E
(k

)

k

Energy spectra

ε = 0.0
ε = 0.1
ε = 0.3
ε = 0.5
ε = 0.7
ε = 0.9

ε = 0.95
ε = 0.99

ε = 0.999
k

-5/3

k
-7/3

At ε = 0.99 the spectrum shows large fluctuations. (Critical Value!)
At ε = 0.999 forward cascade of energy subsides.

and Energy spectra shows a k−7/3 spectrum due to forward helicity

cascade.



Energy flux
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Energy flux gets depleted in the small scales with increasing ε.
There is sudden reversal of flux as we change ε from 0.99 to 0.999.



Joint PDF of helicity and energy fluxes
Joint PDF of ΠE and ΠH (ε = 0.00)
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Joint PDF of ΠE and ΠH (ε = 0.10)
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Joint PDF of ΠE and ΠH (ε = 0.50)
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Joint PDF of ΠE and ΠH (ε = 0.90)
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The helicity flux attains higher values whereas the energy flux
depletes with increasing ε.



Conclusion

I As we increase ε, the contribution of triads leading to inverse
energy cascade grows.

I Only when ε is very close to 1 inverse energy cascade takes
over the forward cascade.

I Critical value of ε may have Reynolds number dependence!
We are attempting high resolution DNS to cover a range of
Reynolds numbers.

I Can both forward and inverse cascade co-exist? We made
simulations with forcing in the inertial range.

I What about intermittency in the forward cascade regime at
changing ε.

Let us look at some more statistics...



local energy dissipation rate
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local energy dissipation rate
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Structure functions

I Order-p equal-time, longitudinal velocity structure functions
Sp(r) ≡ 〈|δu‖(x, r)|p〉
where δu‖(x, r) ≡ [u(x + r, t)− u(x, t)] · rr

I In the inertial range we see the universal scaling Sp(r) ∼ r ζp
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I Deviations from Kolmogorov scaling ζK41
p = p/3 shows

present intermittency.

I Extended Self-Similarity: ζp/ζ3.



Measure of intermittency: Flatness F4(r) = S4(r)/[S2(r)]2
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I Measure of flatness shows the small scale intermittency
reduces significantly when 10% of u− modes are killed.

I It reduces further and seems saturated with increase in ε



Measure of intermittency: ζ2
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Measure of intermittency: ζ4
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Measure of intermittency: ζ6
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Isovorticity surfaces, ε = 0



Isovorticity surfaces, ε = 0.1



Isovorticity surfaces, ε = 0.3



Isovorticity surfaces, ε = 0.5



Isovorticity surfaces, ε = 0.7



Isovorticity surfaces, ε = 0.9



Isovorticity surfaces, ε = 0.999



Isovorticity surfaces



Static decimation

What happens if we allow the killed degrees of freedom to be
the part of the dynamics?



Static decimation

I Solve full Navier-Stokes equations and then apply projection
on the fields to remove desired number of helical modes.
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Static decimation
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I There is no effect of static decimation of helical modes of
statistics of Navier-Stokes equations.

I Only decimated helical modes not taking part in the dynamics
change the statistics.



Summary

I In our simulations, transition from forward cascade to inverse
cascade of energy occurs between ε = 0.99 to ε = 0.999.

I The critical value of ε close to 1 indicates that presence of
only a small fraction of helical modes of other sign could
reverse the dynamics.

I Intermittency reduces as we increase the fraction of the modes
decimated of one helicity sign.

I Statistics differs if the decimated modes were the part of the
dynamic evolution.



Thank you!

Support

I ERC Advanced Grant ’NewTurb’, PI: Prof. Luca Biferale.



Multi scaling exponent ζ2, local slope of S2(r)/S3(r)
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Multi scaling exponent ζ4, local slope of S4(r)/S3(r)
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Multi scaling exponent ζ6, local slope of S6(r)/S3(r)
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